16 resultados para XRD (X-Ray Diffraction)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we compare and contrast the stability of retained austenite during tensile testing of Nb-Mo-Al transformation-induced plasticity steel subjected to different thermomechanical processing schedules. The obtained microstructures were characterised using optical metallography, transmission electron microscopy and X-ray diffraction. The transformation of retained austenite to martensite under tensile loading was observed by in-situ high energy X-ray diffraction at 1ID / APS. It has been shown that the variations in the microstructure of the steel, such as volume fractions of present phases, their morphology and dimensions, play a critical role in the strain-induced transition of retained austenite to martensite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-pressure methods were applied to investigate the structural stability and hydrogen bonding of polar molecules of iodoform by synchrotron radiation X-ray diffraction and Raman spectra measurements, respectively. Up to a pressure of 40 GPa, no phase transitions were observed. The discontinuous frequency shift of the C−H stretching band is believed to be related to the enhancement of the C−H···I weak hydrogen bonds under high pressures. Ab initio calculations were performed, and the results predict the frequency shift of the C−H stretching vibration as C−H···I interacts via hydrogen bonding. The bulk modulus is 17.3 ± 0.8 GPa, with a pressure derivative of 5.2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-pressure behavior of scandium oxide (Sc2O3) has been investigated by angle-dispersive synchrotron powder X-ray diffraction and Raman spectroscopy techniques in a diamond anvil cell up to 46.2 and 42 GPa, respectively. An irreversible structural transformation of Sc2O3 from the cubic phase to a monoclinic high-pressure phase was observed at 36 GPa. Subsequent ab initio calculations for Sc2O3 predicted the phase transition from the cubic to monoclinic phase but at a much lower pressure. The same calculations predicted a second phase transition at 77 GPa from the monoclinic to hexagonal phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First results are presented for a uniaxial tensile stage designed to operate on a scanning micro X-ray diffraction synchrotron beamline. The new tensile stage allows experiments at typical loading cycles used in standard engineering stress–strain tests. Several key features have been implemented to support in situ loading experiments at the intragranular length scale. The physical size and weight of the load cell were minimized to maintain the correct working distance for the X-ray focusing optics and to avoid overloading the high-resolution raster scan translation stages. A high-magnification optical microscope and image correlation code were implemented to enable automated online tracking capabilities during macroscopic elongation of the sample. Preliminary in situ tensile loading experiments conducted on beamline 12.3.2 at the Advanced Light Source using a polycrystalline commercial-purity Ti test piece showed that the elastic–plastic response of individual grains could be measured with submicrometre spatial resolution. The experiments highlight the unique instrumentation capabilities of the tensile stage for direct measurement of deviatoric strain and observation of dislocation patterning on an intragranular length scale as a function of applied load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tensonometer for stretching metal foils has been constructed for the study of strain broadening in X-ray diffraction line profiles. This device, which is designed for use on powder diffractometers and was tested on Station 2.3 at Daresbury Laboratory, allows in situ measurements to be performed on samples under stress. It can be used for data collection in either transmission or reflection modes using either symmetric or asymmetric diffraction geometries. As a test case, measurements were carried out on an 18 µm-thick copper foil experiencing strain levels of up to 5% using both symmetric reflection and symmetric transmission diffraction. All the diffraction profiles displayed peak broadening and asymmetry which increased with strain. The measured profiles were analysed by the fundamental-parameters approach using the TOPAS peak-fitting software. All the observed broadened profiles were modelled by convoluting a refineable diffraction profile, representing the dislocation and crystallite size broadening, with a fixed instrumental profile predetermined using high-quality LaB6 reference powder. The deconvolution process yielded `pure' sample integral breadths and asymmetry results which displayed a strong dependence on applied strain and increased almost linearly with applied strain. Assuming crystallite size broadening in combination with dislocation broadening arising from f.c.c. a/2〈110〉{111} dislocations, the variation of mechanical property with strain has been extracted. The observation of both peak asymmetry and broadening has been interpreted as a manifestation of a cellular structure with cell walls and cell interiors possessing high and low dislocation densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction line profile analysis has been used to study the microstructure of (Ill) oriented gold and platinum thin films deposited by thermal evaporation and DC magnetron sputtering. In addition to crystallite size broadening, the profiles from these films displayed broadening arising from dislocations. A parallel investigation, using transmission electron microscopy (TEM) was undertaken to study the nature of dislocations formed, and to provide information on the dimensions of the crystallite columns in the films. X-ray data were collected at room temperature to determine the anisotropy of the broadening with (hkl), using a Siemens D5000 powder diffractometer (CuKa radiation) and two high-resolution synchrotron instruments (BM 16 at the ESRF [A=0.35A] and station 2.3 at the Daresbury laboratory. Two approaches to instrument deconvolution were investigated; Fourier deconvolution and fundamental parameters profile fitting, using Lab6 as a reference material to determine the instrument profile function. After removal of the crystallite size broadening contribution from the measured integral breadths, the residual microstrain broadening was modelled assuming dislocations based on a FCC a/2<110>{ Ill} slip system. The results of the X-ray analysis agreed with dark field TEM micrographs, which showed that many of the crystallites contained dislocations of mixed character (screw- edge).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of an in-situ tensometer is described along with preliminary results of x-ray line profiles from copper foils under tensile stress. The tensometer was designed and constructed on the high resolution diffraction instrument, Station 2.3 at the synchrotron radiation source (SRS) Daresbury Laboratory, and is capable of collecting data in either symmetric or asymmetric geometry including transmission and reflection modes. Experiments were carried out using 18 J..Lm thick copper foil up to strain levels of 5 % using both symmetric reflection and symmetric transmission diffraction. All profiles displayed diffraction broadening and asymmetry which increased with strain. In addition, the asymmetry observed in symmetric transmission was associated with extended tails on the low angle side of the profiles, but in symmetric reflection data the opposite asymmetry was observed. In the analysis, the measured profiles were fitted using the software TOPAS, a fundamental parameters approach to profile fitting. The instrumental profile function was characterised and modelled using annealed LaB6 powder. The diffraction broadening was then determined by refining the convolution of a Voigt function, an asymmetric exponential function and a fixed instrument function to reproduce the observed broadened profiles. The integral breadth and asymmetry results display a strong order dependence and increase almost linearly with strain. The results were interpreted by assuming crystallite size broadening in combination with dislocation broadening arising from fcc a/2( 110) {Ill } dislocations.